

Synthesis and antimicrobial screening of 5-benzylidene-2-imino-3-(2-oxo-2H-benzopyran-6-yl)-thiazolidin-4-one and its derivatives

Vinata V Mulwad*, Abid Ali Mir & Hitesh T Parmar

Department of Chemistry, The Institute of Science,
15 Madam Cama Road, Mumbai 400 032, India
E-mail: vinata_mulwad@hotmail.com

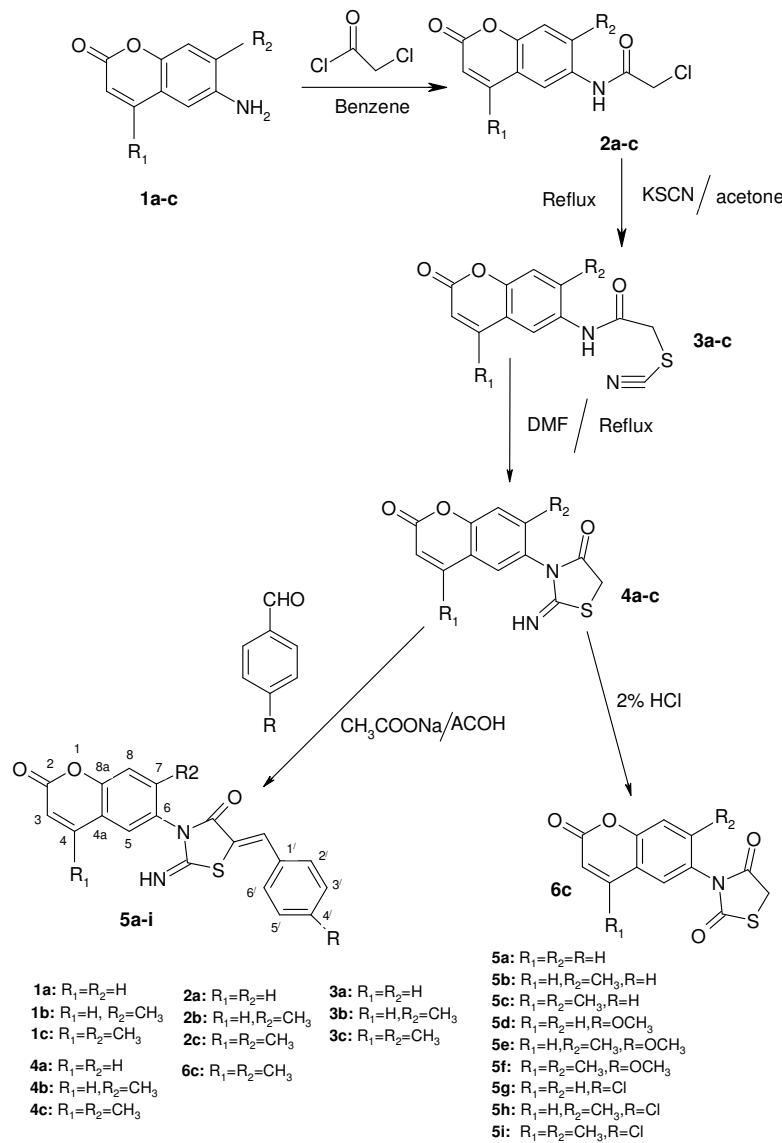
Received 7 May 2008; accepted (received) 22 October 2008

2-imino-3-(2-oxo-2H-benzopyran-6-yl)-thiazolidin-4-one **4a-c** have been synthesized from 6-amino-coumarin as starting material. Condensation of iminothiazolidinone with different substituted aromatic aldehydes occurred at reactive methylene group present at C-5 position of thiazolidin-4-one ring and resulted in the formation of 5-arylidene-2-imino-3-(2-oxo-2H-benzopyran-6-yl)-thiazolidin-4-one **5a-i**. The formation of 2-imino-3-(2-oxo-2H-benzopyran-6-yl)-thiazolidin-4-one **4c** was confirmed by hydrolysis with 2% HCl to give 3-(2-oxo-2H-benzopyran-6-yl)-thiazolidine-2,4-dione **6c**. The structures of the compounds **2a-c**, **4a-c**, **5a-i** and **6c** have been established on the basis of spectral and analytical data. The compounds **5a-i** has been screened for their antimicrobial activity and has been found to exhibit significant antibacterial activities.

Keywords: Aminocoumarin, iminothiazolidinone, 4-thiazolidinone, aromatic aldehydes, antimicrobial activity

There has been considerable interest in the chemistry of thiazolidin-4-one ring system, which is a core structure in various synthetic pharmaceuticals displaying a broad spectrum of biological activities¹. Thiazolidin-4-one ring occurs in nature; thus actithiazic acid [(-) 2-(5-carboxypentyl) thiazolidin-4-one] isolated from *Streptomyces* strains exhibits highly specific *invitro* activity against *Mycobacterium tuberculosis*². Thiazolidinone moiety are known to exhibit diverse bioactivities such as CNS stimulant antihelmintic³, antibacterial⁴, antifungal⁵, analgesic^{6,7}, diurals, anti-inflammatory, anticonvulsant⁸, antimicrobial⁹, anti cancer¹⁰, and anti-HIV¹¹. Hence it is thought of interest to accommodate thiazolidin-4-one and 6-amino coumarin in a single molecular framework and screen for their antimicrobial activity.

Result and Discussion


2-chloro-N-[2-oxo-2H-benzopyran-6-yl]-acetamide **2a-c** was obtained by refluxing 6-aminocoumarin

1a-c and chloroacetyl chloride in dry benzene. Compound **2a-c** on treatment with potassium thiacyanate in acetone was expected to give cyclized product 2-imino-3-(2-oxo-2H-benzopyran-6-yl)-thiazolidin-4-one **4a-c**. However 2-(thiocyanato)-acetamido-coumarin-6-yl **3a-c** intermediate was obtained which showed a sharp band in IR spectrum at 2150 cm⁻¹ for -CN stretching. The cyclization of 2-(thiocyanato)-acetamide derivatives were carried out in highly polar aprotic solvent DMF at 150-155 °C for 4 hr. to afford **4a-c**. In its IR spectrum it showed absence of band at 2150 cm⁻¹ for -CN. The ¹H NMR spectrum of compound **4c** in CDCl₃ showed a singlet at 4.10 for two protons. A broad signal in ¹H NMR was observed at δ 8.05 for the imino group which is D₂O exchangeable. The mass spectrum of **4c** showed molecular ion peak at *m/z* 288 which is also base peak.

In order to confirm the structure of 2-imino-3-(2-oxo-2H-benzopyran-6-yl) thiazolidin-4-one **4a-c**. Compound **4c** was hydrolyzed with HCl to yield 3-(2-oxo-2H-benzopyran-6-yl)-thiazolidin-2,4-dione **6c**. The IR spectrum of compound **6c** in KBr showed band at 2969 for -CH stretching, at 1725 and 1690 cm⁻¹ for >C=O Groups, along with other bands at 1558, 1446, 1269, 1075, 1020, 853 cm⁻¹ etc. The disappearance of bands at 3440 cm⁻¹ (-NH) group further proved the product formation. The reactive methylene group present at C-5 of 2-iminothiazolidin-4-one **4a-c** has been condensed with various aromatic aldehydes to yield 5-arylidene-2-imino-3-(2-oxo-2H-benzopyran-6-yl)-4-thiazolidinone **5a-i** (**Scheme I**). The IR spectrum of compound **5c** in KBr showed band at 3354(-NH), 3065, 2969 for -CH stretching, at 1710 cm⁻¹ for >C=O of coumarin, along with other bands at 1639, 1406, 1255, 1089, 807 cm⁻¹.

Anti-microbial activity

The compounds **5a-i** has been screened for their antimicrobial activity by cup plate¹² method and have found to exhibit significant biological activity (**Table 1**). The compounds **5a-i** screened for their antibacterial activity against *Bacillus subtilis*, *Escherichia coli*, and antifungal activity against *Candida albicans*, *Aspergillus niger* by cup plate method at different concentrations (50 and 100 µg/mL) using DMSO as solvent. The zone of

Scheme I

inhibition of the growth was measured in mm. The activity was compared with the standard drugs. A commercial antibacterial streptomycin (50, 100 μ g/mL) and antifungal griseofulvin (50, 100 μ g/mL) drug was also tested under similar conditions for comparison. The results of antimicrobial activity shows that compounds **5f**, **5i** have significant activity compared to the standards, the rest of the compounds show moderate to good activity.

Experimental Section

General: Melting points were taken in open capillaries and are uncorrected. IR spectra (ν_{max} in cm^{-1}) were recorded on a Perkin-Elmer FTIR, NMR (^1H and

^{13}C) on 300 MHz JEOL NMR AL300 using TMS as standard and CDCl_3 as a solvent. Chemical shifts are given in parts per million (ppm). Mass spectra (GC-MS) were taken on Shimadzu GC-MS QP-2010. Elemental analyses were carried out at IIT, Mumbai. All products were purified by recrystallisation. The reaction was followed up and purity of the products is carried out on pre-coated TLC plates (Silica gel 60 F₂₅₄, Merck), visualizing the spots in ultraviolet light. Column chromatography is performed on Merck silica gel (60-120 mesh).

2-Chloro-N-[2-oxo-2H-benzopyran-6-yl]-acetamide **2a-c** Chloroacetylchloride (0.02 mole) was added to a solution of 6-amino-coumarin (0.02 mole)

Table I — Antimicrobial activities of **5a-i**

Compd	<i>B. subtilis</i>		<i>E. coli</i>		<i>C. albicans</i>		<i>A. niger</i>	
	50 ppm	100 ppm	50 ppm	100 ppm	50 ppm	100 ppm	50 ppm	100 ppm
5a	+	++	+	++	-	+	+	++
5b	+	++	+	++	+	++	+	++
5c	++	++	+	++	+	+	+	++
5d	+	++	++	++	+	++	+	++
5e	+	++	+	++	+	++	+	++
5f	++	++++	++	++++	++	++	++	+++
5g	+	++	+	++	+	++	+	++
5h	++	++	+++	+++	++	++	+	++
5i	++	++++	++	+++	++	+++	++	+++
Sm	+++	++++	++	+++	+++	+++	+++	+++
Gf					+++	+++	+++	+++

Sm = Streptomycin, Zone of inhibition diameter in mm: (-) < 8, (+) 8-10, (++) 10-16, (+++) 16-22, (++++) 22-27.

Gf = Griseofulvin, Zone of inhibition diameter in mm: (-) < 7, (+) 7-10, (++) 12-18, (+++) 18-22, (++++) 22-28

in dry benzene (60 mL) at 0-5°C under stirring, which was subsequently refluxed for 6 hr. on water-bath. The completion of the reaction was monitored by TLC. The solvent was removed by distillation. The solid obtained was recrystallised by ethyl acetate-hexane to yield compound **2a-c**

2a: Mol. Formula C₁₁H₈O₃NCl, m.p. 170°C, yield 68%; IR (KBr): 3370 (-NH), 3050 (arom -CH), 1720 (C=O), 1682, 1028, 689 (C-Cl) cm⁻¹. ¹H NMR (CDCl₃): δ 4.25 (s, 2H, CH₂), 6.28 (d, 1H, J = 9Hz, C₃-H), 7.20 (d, 1H, J = 9Hz, C₈-H), 7.25 (d, 1H, J = 9Hz, C₇-H), 7.28 (s, 1H, C₅-H), 7.60 (d, 1H, J = 9Hz, C₄-H), 8.35 (s, 1H, NH, D₂O-exchangable). Calcd. for C₁₁H₈O₃NCl: C, 55.60; H, 3.39; N, 5.89. Found: C, 55.48; H, 3.29; N, 5.89%

2b: Mol. Formula C₁₂H₁₀O₃NCl, m.p. 185°C; yield 65%; IR: (KBr): 3373 (-NH), 3052 (arom-CH), 1725(C=O), 1681, 1028, 691(C-Cl) cm⁻¹; ¹H NMR (CDCl₃): δ 2.47 (s, 3H, CH₃), 4.30 (s, 2H, CH₂), 6.25 (d, 1H, J = 9Hz, C₃-H), 7.21 (s, 1H, C₅-H), 7.25 (s, 1H, C₈-H), 7.55 (d, 1H, J = 9Hz, C₄-H), 8.30 (s, 1H, NH, D₂O-exchangable); Calcd for C₁₂H₁₀O₃NCl: C, 57.27; H, 4.01; N, 5.89. Found: C, 57.15; H, 4.05; N, 5.76%.

2c: Mol. Formula C₁₃H₁₂O₃NCl, m.p. 210°C, yield 60%; IR: (KBr): 3372 (-NH), 3045 (arom -CH), 1720 (C=O), 1685, 1025, 687(C-Cl) cm⁻¹; ¹H NMR (CDCl₃): δ 2.45 (s, 3H, CH₃), 2.51 (s, 3H, CH₃), 4.30 (s, 2H, CH₂), 6.21 (s, 1H, C₃-H), 7.19 (s, 1H, C₈-H), 7.28 (s, 1H, C₅-H), 8.43 (s, 1H, -NH, D₂O-exchangable); MS, m/z (%): (M+) 265 (100), (M+2) 267 (34), 247(15), 216(40), 189(66), 160(44), 77(32). Calcd for C₁₃H₁₂O₃NCl: C, 58.77; H, 4.55; N, 5.27. Found: C, 58.62; H, 4.49; N, 5.17%.

2-(thiocyanato)-acetamido-coumarin **3a-c** A mixture of **2a-c** (0.014 mole), and KSCN (0.02 mole) and dry acetone (40 mL) was refluxed on water-bath for 4 hr. (TLC monitored). The resulting mixture was cooled, excess of acetone was removed by distillation, and the residue was poured into crushed ice. The solid thus obtained was filtered, washed with water, dried and recrystallized from ethanol to give **3a-c**

3a: Mol. Formula C₁₂H₈O₃N₂S, m.p. 165°C, yield 63%; IR: (KBr): 3425 (-NH), 3019, 2923(-CH), 2154 (-CN), 1720(>CO), 1652, 1540, 1391, 1052, 886 cm⁻¹;

3b: Mol. Formula C₁₃H₁₀O₃N₂S; m.p. 170 °C, yield 66%; IR: (KBr): 3435 (-NH), 3019, 2945 (-CH), 2157 (-CN), 1725 (>CO), 1660, 1539, 1394, 1050, 882 cm⁻¹.

3c: Mol. Formula C₁₄H₁₂O₃N₂S; m.p. 174°C yield 68%; IR: (KBr): 3440 (-NH), 3017, 2944 (-CH), 2160 (-CN), 1727 (>CO), 1655, 1538, 1384, 1055, 887 cm⁻¹.

2-imino-3-(2-oxo-2H-benzopyran-6-yl) thiazolidin-4-one **4a-c** Finely powdered 1.0 g of 2-thiacyanto-acetamido-amino coumarin **3a-c** was refluxed in 20 mL dimethylformamide in an oil-bath at 150-60°C for 6 hr. The solvent was removed by distillation under vacuum and the crude product was crystallized from ethanol to give crystals of 2-imino-4-thiazolidinone.

4a: Mol. Formula C₁₂H₈O₃N₂S, m.p. 158°C; yield 62%; IR: (KBr): 3429 (NH), 3055, 2952 (-CH), 1725 (>CO), 1650, 1554, 1399, 1247, 1092, 1044, 805 cm⁻¹ etc. ¹H NMR (CDCl₃): δ 4.20 (s, 2H, CH₂), 6.30 (d, 1H, J = 8.5Hz, C₃-H), 7.21 (d, 1H, J = 8.5Hz, C₈-H), 7.25 (d, 1H, J = 8.5Hz, C₇-H), 7.35 (s, 1H, C₅-H), 7.82 (d, 1H, J = 8.5Hz, C₄-H), 8.30 (s, 1H, NH, D₂O-exchangable), Calcd. for C₁₂H₈O₃N₂S: C, 55.38; H, 3.10; N, 10.76; S, 12.32. Found: C, 55.51; H, 3.12; N, 10.71; S, 12.39%.

4b: Mol. Formula $C_{13}H_{10}O_3N_2S$; m.p. $165^{\circ}C$, yield 65%; IR: (KBr): 3432 (NH), 3040, 2950 (-CH), 1721 (>CO), 1656, 565, 1400, 1240, 1092, 1041, 890 cm^{-1} . 1H NMR ($CDCl_3$): δ 2.30 (s, 3H, CH_3), 4.15 (s, 2H, CH_2), 6.26 (d, 1H, J = 9Hz, C_3 -H), 7.19 (s, 1H, C_8 -H), 7.32 (s, 1H, C_5 -H), 7.80 (d, 1H, J = 8.5Hz, C_4 -H), 8.28 (s, 1H, NH, D_2O -exchangable). Calcd. for $C_{13}H_{10}O_3N_2S$: C, 56.92; H, 3.67; N, 10.21; S, 11.69. Found: C, 57.01; H, 3.70; N, 10.18; S, 11.78%.

4c: Mol. Formula $C_{14}H_{12}O_3N_2S$; m.p. $168^{\circ}C$ yield 68%; IR: (KBr): 3440 (NH), 3045, 2923 (-CH), 1723 (>CO), 1652, 1563, 1410, 1230, 1095, 1041, 859 cm^{-1} . 1H NMR ($CDCl_3$): δ 2.27 (s, 3H, CH_3), 2.40 (s, 3H, CH_3), 4.10 (s, 2H, CH_2), 6.27 (s, 1H, C_3 -H), 7.18 (s, 1H, C_8 -H), 7.35 (s, 1H, C_5 -H), 8.35 (s, 1H, NH, D_2O -exchangable). MS: m/z (%): (M+) 288, 214(40), 188(50), 160(25), 170(18), 145(10), 130(30), 91(38), 77(60). Calcd. for $C_{14}H_{12}O_3N_2S$: C, 58.32; H, 4.20; N, 9.72; S, 11.12. Found: C, 58.44; H, 4.24; N, 9.65; S, 11.25%.

5-arylidene-2-imino-3-(2-oxo-2H-benzopyran-6-yl)-4-thiazolidinone **5a-i** A mixture of **4a-c** (0.01 mole), aryl aldehydes (0.01 mole) and fused sodium acetate (0.015 mole) in gl. acetic acid (15 mL) was refluxed for 6 hr. The resulting mixture was cooled and the residue poured into crushed ice and neutralized by adding 10% sodium bicarbonate solution. The solid obtained was filtered, washed with water, dried and recrystallized from ethanol to give **5a-i**.

5a: Mol. Formula $C_{19}H_{12}O_3N_2S$; m.p. $185^{\circ}C$ yield 60%; IR: (KBr): 3356 (-NH), 1705 (>C=O), 1670, 1551, 1435, 1223, 1131, 1025, 834 cm^{-1} ; 1H NMR ($CDCl_3$): 6.23 (d, 1H, J = 9.3Hz, C_3 -H), 6.80-7.30 (m, 3H, C_8 -H, C_7 -H, C_5 -H), 7.55 (m, 4H, Ar-H), 7.65 (d, 1H, J = 9Hz, C_4 -H), 8.05 (s, 1H, C=CH-Ar), 8.32 (s, 1H, NH, D_2O -exchangable).

5b: Mol. Formula $C_{20}H_{14}O_3N_2S$; m.p. $168^{\circ}C$ yield 68%; IR: (KBr): 3342 (-NH), 1725 (>C=O), 1668, 1552, 1421, 1248, 1030, 869 cm^{-1} ; 1H NMR ($CDCl_3$): 2.40 (s, 3H, CH_3), 6.24 (d, 1H, J = 9Hz, C_3 -H), 6.85 (s, 1H, C_8 -H), 7.20 (s, 1H, C_5 -H), 7.58 (m, 4H, Ar-H), 7.70 (d, 1H, J = 9Hz, C_4 -H), 8.08 (s, 1H, C=CH-Ar), 8.29 (s, 1H, NH, D_2O -exchangable).

5c: Mol. Formula $C_{21}H_{16}O_3N_2S$; m.p. $210^{\circ}C$ yield 68%; IR: (KBr): 3354 (-NH), 1710 (>C=O), 1650, 1557, 1425, 1233, 1123, 824 cm^{-1} ; 1H NMR ($CDCl_3$): δ 2.26 (s, 3H, CH_3), 2.38 (s, 3H, CH_3), 6.25 (s, 1H, C_3 -H), 6.88 (s, 1H, C_8 -H), 7.23 (s, 1H, C_5 -H), 7.50 (m, 4H, Ar-H), 8.03 (s, 1H, C=CH-Ar), 8.32 (s, 1H, NH, D_2O -exchangable).

5d: Mol. Formula $C_{20}H_{14}O_4N_2S$; m.p. $182^{\circ}C$, yield 55%; IR: (KBr): 3329 (NH), 3045, 2950 (-CH), 1721 (>CO), 1655 (>C=O), 1550, 1400, 1032, 805 cm^{-1} . 1H NMR ($CDCl_3$): δ 3.65 (s, 3H, OCH_3), 6.25 (d, 1H, J = 8.7Hz, C_3 -H), 6.85-7.30 (m, 3H, C_8 -H, C_7 -H, C_5 -H), 7.35 (d, 2H, J = 7.5Hz, 2'-6'-H), 7.40 (d, 2H, J = 7.5Hz, 3'-5'-H), 7.68 (d, 1H, J = 9Hz, C_4 -H), 8.05 (s, 1H, C=CH-Ar), 8.34 (s, 1H, NH, D_2O -exchangable);

5e: Mol. Formula $C_{21}H_{16}O_4N_2S$; m.p. $188^{\circ}C$ yield 58%; IR: (KBr): 3340 (-NH), 3016, 2934 (-CH), 1723 (>CO), 1655, 1538, 1384, 1050, 897 cm^{-1} . 1H NMR ($CDCl_3$): δ 2.45 (s, 3H, CH_3), 3.60 (s, 3H, OCH_3), 6.20 (d, 1H, J = 9Hz, C_3 -H), 6.80 (s, 1H, C_8 -H), 7.10 (s, 1H, C_5 -H), 7.30 (d, 2H, J = 7.5Hz, 2'-6'-H), 7.50 (d, 2H, J = 7.5Hz, 3'-5'-H), 7.68 (d, 1H, J = 9.3Hz, C_4 -H), 8.03 (s, 1H, C=CH-Ar), 8.30 (s, 1H, NH, D_2O -exchangable).

5f: Mol. Formula $C_{22}H_{18}O_4N_2S$; m.p. $190^{\circ}C$ yield 57%. 1H NMR ($CDCl_3$): 2.21 (s, 3H, CH_3), 2.42 (s, 3H, CH_3), 3.68 (s, 3H, OCH_3), 6.23 (s, 1H, C_3 -H), 6.85 (s, 1H, C_8 -H), 7.35 (s, 1H, C_5 -H), 7.35 (d, 2H, J = 7.5Hz, 2'-6'-H), 7.60 (d, 2H, J = 7.5Hz, 3'-5'-H), 8.06 (s, 1H, C=CH-Ar), 8.28 (s, 1H, NH, D_2O -exchangable).

5g: Mol. Formula $C_{19}H_{11}O_3N_2SCl$; m.p. $168^{\circ}C$ yield 65%; IR: (KBr): 3338 (-NH), 3029, 2940 (CH-arom.), 1727 (>CO), 1655, 1538, 1384, 1055 cm^{-1} . 1H NMR ($CDCl_3$): 6.28 (d, 1H, J = 9Hz, C_3 -H), 7.05-7.55 (m, 3H, C_8 -H, C_7 -H, C_5 -H), 7.40 (d, 2H, J = 7.5Hz, 2'-6'-H), 7.65 (d, 2H, J = 7.5Hz, 3'-5'-H), 7.72 (d, 1H, J = 9Hz, C_4 -H), 8.08 (s, 1H, C=CH-Ar), 8.35 (s, 1H, NH, D_2O -exchangable).

5h: Mol. Formula $C_{20}H_{13}O_3N_2SCl$; m.p. $175^{\circ}C$ yield 62%; IR: (KBr): 3320 (-NH), 3018, (-CH), 172 (>CO), 1663, 1531, 1382, 1065, 887 cm^{-1} ; 1H NMR ($CDCl_3$): δ 2.38 (s, 3H, CH_3), 6.25 (d, 1H, J = 9Hz, C_3 -H), 6.85 (s, 1H, C_8 -H), 7.18 (s, 1H, C_5 -H), 7.44 (d, 2H, J = 7.5Hz, 2'-6'-H), 7.68 (d, 2H, J = 7.3Hz, 3'-5'-H), 7.75 (d, 1H, J = 9Hz, C_4 -H), 8.05 (s, 1H, C=CH-Ar), 8.28 (s, 1H, NH, D_2O -exchangable).

5i: Mol. Formula $C_{21}H_{15}O_3N_2SCl$; m.p. $182^{\circ}C$ yield 68%; IR: (KBr): 3340 (-NH), 3011, 2944 (-CH), 1727 (>CO), 1658, 1538, 1394, 1045, 885 cm^{-1} ; 1H NMR ($CDCl_3$): δ 2.25 (s, 3H, CH_3), 2.42 (s, 3H, CH_3), 6.26 (s, 1H, C_3 -H), 7.05 (s, 1H, C_8 -H), 7.18 (s, 1H, C_5 -H), 7.50 (d, 2H, J = 7.5Hz, 2'-6'-H), 7.70 (d, 2H, J = 7.5Hz, 3'-5'-H), 8.02 (s, 1H, C=CH-Ar), 8.30 (s, 1H, NH, D_2O -exchangable).

3-(2-Oxo-2H-benzopyran-6-yl)-thiazolidine-2,4-dione **6c** A mixture of **4c** (7 mmole) was treated with

2% HCl (15 mL) and was refluxed for 3 hr. The resulting mixture was cooled and the reaction-mixture was neutralized with solid sodium bicarbonate. The solid obtained was filtered, washed with water, dried and recrystallized from ethanol to give **6c**. Mol. Formula C₁₄H₁₁NO₄S, m.p. 175-77°C, yield: 45%; IR: (KBr): 2966 (-CH), 1725, 1690 (>C=O), 1550, 1440, 1269, 1075, 1020, 893 cm⁻¹; ¹H NMR (CDCl₃): δ 2.25 (s, 3H, CH₃), 2.43 (s, 3H, CH₃), 4.25 (s, 2H, CH₂), 6.26 (s, 1H, C₃-H), 7.33 (s, 1H, C₈-H), 7.35 (s, 1H, C₅-H). ¹³C NMR (CDCl₃): 14.6 (CH₃), 18.6 (CH₃), 42.5(CH₂), 114.5(C₃), 115.5-133.5 (5-aromatic carbon), 150(C_{8a}), 151.0(C₄), 160.0(C₂), 165.2(CO), 170.0(N-CO-CH₂).

References

- 1 (a) Vigorita M G, Ottana R, Monforte F, Maccari R, Trovato A, Monforte M T & Taviano M F, *Bioorg Med Chem Lett*, 11, **2001**, 2791
(b) Chande M S & Suryanarayanan V, *J Chem Res*, 6, **2005**, 345
(c) Kavitha C V, Basappa S, Swamy N, Mantelingu K, Doreswamy S, Sridhar M A, Prasad S & Rangappa K S, *Bioorg Med Chem*, 14, **2006**, 2290.
- 2 Sabin B A, *J Am Chem Soc*, 74, **1952**, 2947; Grundy W E, Whitman A I, Rdzok E G, Rdzok E J, Haris M E & Sylvester W E, *Antibiot Chemother*, 2, **1952**, 399.
- 3 Srivastava S K, Yadav R & Srivastava S D, *J Indian Chem Soc*, 81, **2004**, 342.
- 4 Mishra S, Srivastava S K & Srivastava S D *Indian J Chem*, 36B, **1997**, 826.
- 5 Jaish L & Srivastava S K, *Proc Natl Acad Sci India*, 72(A), **2002**, 15.
- 6 Asati K C, Srivastava S K & Srivastava S D, *Indian J Chem*, 45B, **2006**, 526.
- 7 Asati K C, Srivastava S K & Srivastava S D, *Chemistry: Indian Journal*, 1(10), **2005**, 667.
- 8 Srivastava S K, Srivastava S & Srivastava S D, *Indian J Chem*, 41B, **2002**, 1937, *Ibid*: 41B, 2002, 2357.
- 9 (a) Desai S B, Desai P B & Desai K R, *Asian J Chem*, **1999**, 2, 363. (b) Sharma R C & Kumar D, *J Indian Chem Soc*, 77, **2000**, 492.
- 10 Bhatt J J, Shah R B, Shah P H, Trivedi B P, Undavia K N, Desai C N, *Indian J Chem*, 33B, **1994**, 189.
- 11 Rawal R K, Prabhakar Y S & Katti S B & De Clercq E, *Bioorg Med Chem*, 13, **2005**, 6771.
- 12 W B Hugo & A B Russel, *Pharmaceutical Microbiology*, 4th edn, (Blackwell Scientific Publications, London), **1987**, 265.